Related Questions with Solutions

QuestionsQuestionsQuestionsOne of the equation $x \frac{dy}{dx} + y = y^2 x^3 \cos x$ isA. $\frac{1}{xy} + x \sin x + \cos x = C$ B. $x(y + \sin x) + \cos x = C$ B. $x(y + \sin x) + \cos x = C$ C. $1 + x^2 y \sin x + y \cos x = Cxy$ D. none of these

Solutions

Solution: 01

Dividing by xy^2 , the given equation can be rewritten as $\frac{1}{y^2}\frac{dy}{dx} + \frac{1}{x}\cdot\frac{1}{y} = x^2\cos x$ Put $\frac{1}{y} = u$, we have $-\frac{1}{y^2}\frac{dy}{dx} = \frac{du}{dx}$ So, $\frac{du}{dx} - \frac{1}{x}u = -x^2\cos x$ which is a linear differential equation with I.F. $= e^{\int \frac{f}{x}dx} = 1/x$. Thus, solution is $\frac{d}{dx}(u/x) = -x\cos x$ On integrating both sides, we get $u/x = -[x\sin x + \cos x] + C$ $\Rightarrow \frac{1}{xy} + x\sin x + \cos x = C$

Correct Options

Answer:01 Correct Options: A